本系列所有代码实现均参考https://github.com/lawlite19/MachineLearning_Python
import numpy as np
from matplotlib import pyplot as plt
# 线性回归
# X是矩阵,每一行是一组输入数据;theta是列向量;y也是列向量
def ComputeCost(X, y, theta):
m = len(y)
J = 0
t = np.dot(X, theta)-y
J = np.dot(t.T, t)/(2*m)
return J
# 计算代价函数
# alpaa是学习率;num_iters是迭代次数
def GradientDescent(X, y, theta, alpha, num_iters):
m = len(y)
n = len(theta)
temp = np.matrix(np.zeros((n, num_iters))) # 暂存每次迭代计算的theta,转化为矩阵形式
J_history = np.zeros((num_iters, 1)) # 记录每次迭代计算的代价值
for i in range(num_iters): # 遍历迭代次数
h = np.dot(X, theta) # 计算内积,matrix可以直接乘
temp[:, i] = theta-((alpha/m)*(np.dot(X.T, h-y))) # 梯度的计算
theta = temp[:, i]
J_history[i] = ComputeCost(X, y, theta) # 调用计算代价函数
# print(J_history[i])
return theta, J_history
def featureNormaliza(X):
X_norm = np.array(X) # 将X转化为numpy数组对象,才可以进行矩阵的运算
# 定义所需变量
mu = np.zeros((1, X.shape[1]))
sigma = np.zeros((1, X.shape[1]))
mu = np.mean(X_norm, 0) # 求每一列的平均值(0指定为列,1代表行)
sigma = np.std(X_norm, 0) # 求每一列的标准差
for i in range(X.shape[1]): # 遍历列
X_norm[:, i] = (X_norm[:, i]-mu[i])/sigma[i] # 归一化
return X_norm, mu, sigma
# 逻辑回归
if __name__ == "__main__":
alpha = 0.01
num_iters = 400
# 取消归一化需要的参数
#alpha = 0.0000001
#num_iters = 4000
data = np.loadtxt('data.txt', delimiter=',', dtype=np.float64)
X = data[:, 0:-1]
y = data[:, -1].reshape(-1, 1)
X, mu, s = featureNormaliza(X)
#plt.scatter(X_norm[:, 0], X_norm[:, 1])
# plt.show()
X = np.hstack((np.ones((X.shape[0], 1)), X))
theta = np.zeros((X.shape[1], 1))
theta, J_history = GradientDescent(X, y, theta, alpha, num_iters)
x = np.arange(1, num_iters+1)
plt.plot(x, J_history)
plt.show()
虽然算法理解起来不算很难,等到了自己动手是实现的时候还是有很多问题的。